
Implementation of BT, SP, LU, and FT of NAS Parallel Benchmarks in

Java

Matthew Schultz, Michael Frumkin, Haoqiang Jin, and Jerry Yan"

Numerical Aerospace Simulation Systems Division
NASA Ames Research Center

Abstract

A number of Java features make it an attractive but a debatable choice for High Perfor-

mance Computing. We have implemented benchmarks working on single structured grid
BT, SP, LU and FT in Java. The performance and scalability of the Java code shows that a

significant improvement in Java compiler technology and in Java thread implementation
are necessary for Java to compete with Fortran in HPC applications.

1. Introduction

The portability and expressive power of Java language ignited interest in the HPC

community to use Java for computationally intensive tasks. While there are number of

significant obstacles to achieve high performance of Java code there is work under way

to implement a highly efficient Java compiler [5]. In this paper we evaluate Java as a

choice for programming of Aerospace applications. For this purpose we have implement-

ed NAS Serial Benchmarks BT, SP, LU, and FT in Java, parallelized them using Java

threads and collected some performance data on SUN Enterprise10000 and Origin2000

machines. The serial code used in the development is the same code used in HPF versions

of the benchmarks [2].

The implementation includes three stages: translation, multithreading and perfor-

mance analysis. The translation phase consisted of developing a strategy for mapping

Fortran constructs to Java constructs and creating macros to automate the process. The

parallelization phase consisted of creating a base class to hold the data to be shared

among threads, deriving a new class for each type of thread and writing code to split the

work between the threads. The performance analysis stage includes profiling code, com-

paring the performance with the Fortran version and analyzing Java overhead and

threading overhead.

"MRJ Technology Solutions, Inc. M/S T27A-2, NASA Ames Research Center, Moffett Field, CA 94035-1000; e-mail:
{frumkin, yan} Onas. nasa. gov

2. Fortran to Java Translation Options

Java is more expressive language than Fortran. It implies a simple translation from

Fortran to Java and a challenge in achieving performance of Java code matching the per-

formance of Fortran code. In the process of translating the NAS Parallel Benchmarks [1]

written in Fortran to Java we have to address a number of issues: conversion of arrays,

DO loops, conditional statements and numerical stability.

In order to convert Fortran to Java, a consistent method for converting arrays had to

be developed. The issue is simplified by the fact that both Fortran and Java employ a lin-

ear memory model. Fortran arrays are simply pointers to contiguous blocks of memory

while Java arravs are objects. The consequence of this is that in Fortran, arrays can start

from any index whereas in Java the index must always be zero. The default starting index

of a Fortran array is one. This means that to directly convert the default Fortran array to

Java, an array subscript expression must be shifted by one for each dimension.

In Java, multidimensional arrays are implemented as arrays of arrays, and because of

the promise of Java to be a safe language, a bounds check is required for each dimension

of the array.

In Fortran, a subscripted array is passed to a function as a pointer to, that location in

the array. Both these factors make it desirable to implement Fortran arrays in Java as sin-

gle dimensional arrays. This reduces the bounds checking to two comparisons as well as

allowing Fortran functions taking arrays to be passed with only one additional argument

for the offset to the array. Multidimensional arrays in Java we implemented as one dimen-

sional arrays using index linearization to simulate multiple dimensions.

Example 1. Fortran array

REAL*8 u(B,nx,ny,nz

u(m,i,j,k):...

we translate to Java code:

double u[]:new double[5*nx*ny*nz] ;

int usizel=l,

usize2=usizel*5,

usize3=usize2*nx,

usize4=usize3*ny;

u((m-l) *usizel+(i-1)*usize2+(j-1)*usize3+(k-1)*usize4)

The Fortran dimension statement can be directly translated to the resetting array sizes,

however in the benchmarks it was required only few times and we did it by hand.

The described mapping has one deficiency making programming with one dimen-

sional Javaarrays difficult. The problem is that usize* should be recomputed each time

array u is redimensioned, for example in a subroutine. This programming hardship can

be alleviated by simulating Fortran arrays with a ShapedArray class:

class Shaped_rray {

private double eli] ;

private int sizel,size2,sizel;

private void shape(int k, int l,int m){

sizel=k; size2=l; sizel=m;

}

private int idx(int i,int j,int k){

int offset:(i-!)*usizel+(j-l)*usize2+(k-l)*usizel;

if (offset<0[Ioffset>=el.length)

throw (Inval idArrayIndexException) ;

return offset;

}

};

Array access would look as follows:

ShapedArray u : new ShapedArray[63] ;

/*reshaping the array*/

u.shape(7,3,3) ;

/*accessing array element based on the current shape*/

u.el[u.idx(i, j,k)]....

Use of the ShapedArray would make Java code simpler to read and more resembling For-

tran code, however it would involve a call to a member function at each array access. Oth-

er array implementations in Java such as Java Array Package [6] would suffer the same

inefficiency problem unless the Java compiler supports semantic inlining.

Java lacks primitive complex data type used in FT benchmark. The use of Complex

class would cause the similar inefficiency as the use of Array class. For this reason we

have implemented complex arrays as array of doubles of twice of size with even elements

storing real parts and odd elements storing the imaginary parts. The modification of the

FT code performing actual calculations with complex numbers was done by hand.

3. Semiautomatic Fortran to Java Translation

For converting Fortran array notation to Java notation, we used emacs regular ex-

pressions (RE) to convert the vast majority of the array expressions. In Fortran, an array

is an identifier followed by an open parenthesis, followed by a comma separated list of

expressions, followed by a closing parenthesis. In emacs, the value of an RE can be saved

by enclosing it in backslashed parentheses and later referenced by using backslash and

the number, in order, of the saved RE. These factors make it possible to translate arrays

mechanically on a per array basis using the following macro.

arrayname(< [^,]+>, < [^,]+>, < [^,]+ >, < [^)]+ >) :>

arrayname [\i+ ,,2*sizel+\3*size2+\4*size3]

For an array with n dimensions the first n-1 array expressions can be read in by first

finding arrayname (, and then getting one or more characters that are not a comma

< [",] + > for each dimension up to n-1. The last dimension is read in by getting one or

more characters that are not a closing parenthesis < [")] + >. This is then replaced with

arrayname [\l+\2*sizel+\3*size2+\4*size3]

The final subscript decrementing was done by hand.

The basic do loop with an increment of one have been converted to Java for loops us-

ing the macro

do[]+<[-+a-zO-9]+>[]*=[]*<[-+a-zO-9]+>[]*, []*<.+>

and replacing it with

for (\1=\2 ;\i<:\3 ;\I++) {

The end do can then have been converted to a closingbrace using the macro end []+do.

Translation of general Fortran conditional statements to Java would require a pars-

ing of Fortran code and translation of the parse tree to Java equivalent. However, the

translation of simple conditional i f then else chains found in the benchmarks have

been accomplished in 4 steps:

• transform all then to {,

• transform all else if to }else if,

• transform all else to }else{

• transform endif to }.

Several Fortran constructs can be changed to Java through context free replacement.

These include all boolean operators, all type declarations except character arrays which

should be converted to Java strings, comments, the call statement, and line continuation

marker.

Using these macros as well as hand coding end of statements, intrinsic functions, ar-

ray bounds and various miscellaneous Fortran code the BT, SP, LU, and FT have been

translated to Java in the following way. We created a class for each benchmark and made

function skeletons for each Fortran function in each benchmark. We then made all com-

mon variables members of the benchmark class. We also created stride variables for each

different size of array. We then created a function skeleton for the main program called

runBenchMark. Then we inserted the Fortran code for each function and translated it di-

rectly into Java.

4. Using Java Threads for Parallelization

Conceptually Java Threads are close to the OpenMP threads and we used OpenMP

version of the benchmarks (PBN-OMP), implemented in NASA Ames Research Center,

as a starting point for writing parallel versions. The base class for threads was derived

from class java. lang. Thread and all common variables were implemented as static

members of this class. Then we derived from this base class, classes for each parallelizable

routine and a master class to control the synchronization of the worker classes. To imple-

ment synchronization by switching threads between blocked and runnable states we

used the wait () and notify () methods of the Thread class and a boolean variable to

denote when a worker was done with a given task.

The work of initializing and partitioning the work for the threads is accomplished in

the benchmark base constructor along with setting up the benchmark for a given size

class. Two functions, partition and set_interval are used to split the outer for

loops of parallelizable routines among the threads. The partition, takes a given size

and number of threads as arguments and splits the number of loop iterations as evenly as

possible among the threads. The set interval then takes an array of intervals and a

starting point and returns a starting and ending point for each threads' for loop.

The master thread dispatches the job to each worker, starts workers and waits until

all workers are finished:

for(i:O;i<num threads;i++)worker[i] .done:false;

for (i=O ;i<num_threads ;i++)

synchronized (worker[i]){worker[i] .notify() ;}

for (i=O ;i<num_threads ;i++)

while(!worker[i] .done) {

try{wait () ; }catch(Exception e) {}

}

Each worker thread is then started and immediately goes into a blocked state on the

condition that the variable done is true, then performs the work and notifies the master

that the work is done:

public synchronized void run() {

while(true) {

while (done) {

try{wait() ; } catch(InterruptedException ie) {}

}

step () ;

done=true;

synchronized (master) {master.notify () ; }

}

};

All worker threads are implemented as daemon threads, so that when the master

thread terminates, the program will automatically terminate even though the worker

threads are never explicitly destroyed. The while loop around the wait call prevents an

arbitrary notify call from waking a thread before its time. All CFD code is placed in the

step method. When the step method returns, the thread sets it's done flag to true and then

notifies the master thread that it is done.

The described model of thread synchronization is applicable only if there is no depen-

dence between workers: each worker processes the job dispatched by the master indepen-

dently on other workers. Such dependence, however exists in LU where the

computations are pipelined. This requires for each worker to notify its neighbor on the

work ready for his execution. We have implemented the pipelined computations with

two level wait-notify methods in worker threads:

while (true) {

while (done) {

try{wait() ; }catch(InterruptedException ie) {}

}

for (k=l ;k<nz ;k++) {

if (id>0) {

while (todo<=0){

try{wait() ; }catch(Exception e) {}

}

}

step(k) ;

todo-- ;
if (id<num_threads-l) synchronized (neighbor [id+l]) {

worker[id+! .todo++;
worker[id+i .notify() ;

}

}

done=true ;

if(id==num threads-l)

synchronized (master) {master .notify() ; }

}

The master thread starts all workers but waits only for the last worker to finish (the pipe-

line mechanism guarantees that all other workers have finished already):

for(i:O;i<num_threads;i++) worker[i] .done:false;

for (i=O ;i<num_threads ;i++)

synchronized (worker [i]) {worker [i] .notify () ; }

while (!worker [num_threads-i] .done) {

try{wait() ;} catch(Exception e) {}

}

5. The Performance and Speedup

The performance of a Java implementation of the NAS Parallel Benchmarks is signif-

icantly slower than the corresponding Fortran code. Because the serial benchmarks were

directly translated, the slowdown must be attributed to the JVM. Several factors are in-

volved in this slowdown.

Although the majority of bounds checks were eliminated through flattened arrays,

one pair of bounds checks for each array access is still done. Coupled with the fact that

the majority of the array accesses are within for loops, the bounds checking done by the

JVM slows down the NPB codes. In [5] it is shown that moving bounds check out of the

loop nest can reduce the number of bound checks to few checks per loop nest, while pre-

serving the Java requirements for secure array access. This reduction, however, requires

some support from JVM.

Another slowdown occurs because of the virtual function mechanism in Java, which

requires an additional pointer dereference. As the statistics below show, the factor by

which the benchmarks slow down is machine and JVM dependent. All benchmarks have

bee compiled with flag -O and on SGI machine have been run with -native flag to JIT.

A comparison of Fortran code and Java code running under perfex on Origin2000

7

showed that the Java code has an order of magnitude more instructions than similar for-

tran code. The perfex profile also shows that Java code has better cache utilization then

the Fortran code which we attribute to the spilling of instructions to the cache. The num-

ber of floating point instructions issued by Java code was about factor of 2 larger then in

the Fortran code, confirming known Java inability to issue the mad instruction, cf. [5].

Performance of the Java code is summarized in Table 1, Table 2, and the profile of the

subroutine performance is shown in Figure 1, Figure 2, Figure 3.

TABLE 1. Benchmarks time on SUN Enterprise10000 (333 MHzmachine)(sec), Java

version "1.1.3"

Thread number Serial 1 2 4 8 9 12 16

BT.A Java 13609.5 14671.3 7381.7 3846.3 2305.0 2042.7 1782.7 1762.2

SP.A Java 10235.8 11108.1 5692.9 3409.3 2095.5 1899.1 1862.1 1671.2

LU.A Java 12344.5 13578.9 6843.3 3765.7 2077.3 1892.7 1730.2 1745.4

FT.A Java 1104.6

TABLE 2. Benchmarks time on SGI Origin2000 (195 MHz machine) (sec), Java version

"3.1 (Sun 1.1.5)"

Thread number

BT.A Java

SRA Java

Serial

14605.2

9948.0

16447.6

10293.7

8448.4

5640.4

4

4375.6

3001.4

2550.9

1699.3

9

2230 2

1690.3

12

1700.6

1361.3

16

1367.4

1254.9

LU.AJava 14684.8 17585.7 10330.0 4901.6 2511.1 2335.2 1797.7 1655.9

FT.A Java

BT profile on SGI Origin 2000

I--=- TOTRL I
104 "_ I "'=''RHS I

I*XSOLUERI
. I--..,VSOLUERI

,., _ I'"ZS°LUERI
'%. i

10 3 _,,,_............ _ !................

- _ i

....... =

100 101

NuMber of Threeds

FIGURE 1. BT profile on Origin2000

SP profile on SGI Ori9in 2000

10 _

10 3.

...........................IsP _o,_,_ I.......
I --_- TOTRL I
I..... RHS I

"_ IXSOLUEI
I VSOLUE I

. _ I.....ZSOLUE I

........ 7._, L,

. "% i'lL.

,, '_., i

• %.

• _m,tl.

10 0 101

NuMber of Threads

FIGURE 2. SP profile on Origin2000

10

LU profile on SG! Or.igin 2000

lO A-

103

r

_. LUpr.of [
........... _I_!r_ TOTRL |

14- R.s Ix I._. JFICLOI

"" "'_| i

", % , i

Ix

10 0

%.i ="1

i "o...o

.... i

]o !

NuMber of Thr.eods

FIGURE 3. LU profile on Origin2000

Multithreading of the Java Benchmarks introduces overhead about 10%. The speed-

up with 16 threads is in the range 6-12 (efficiency 0.38-0.75).

6. Related Work

In implementing BT, SP and LU, only Java threads were used. The University of

Westminster's Performance Engineering Group at the School of Computer Science used

the Java jni to create a system dependent Java MPI library. They also used this library to

implement the NAS benchmarks FT and IS using javaMPI [3].The Westminster version of

javaMPI can be compiled on any system with java 1.0.2 and LAM 6.1.

The University of Adelaide's Distributed and High Performance Computing Group,

has also released the NAS benchmarks EP and IS (with FT, CG and MG under develop-

ment), [4] along with many other benchmarks in order to test Java's suitability for grand

applications.

11

7. Conclusions

Although the performance of these benchmarks is not comparable with other lan-

guages at this time, using the performance enhancing methods detailed in [5] serial per-

formance could be improved to near Fortran-like performance. Efficiency of

paralleization with threads is about 0.5 fo up to 16 threads and comparable with efficiency

of parallelization with OpenMP, MPI and HPF. However, with several groups working

on MPI for Java, improvements in parallel performance and scalability seem inevitable as

well. The attraction of Java as a numerically intensive applications language is primarily

driven by its ease of use, portability and widespread documentation and reference mate-

rials. If it is made to run faster though methods that have already been researched exten-

sively, such as high order loop transformations, semantic inlining and a wider availability

of traditionally optimized native compilers, it could be an ideal environment for such ap-

plications.

8. References

[1] D. Bailey, T: Harris, W. Saphir, R. van der Wijngaart, A. Woo, M. Yarrow. The NAS Parallel Benchmarks

2.0. Report NAS-95-020, Dec. 1995. http://science.nas.nasa.gov/Software/NPB.

[2] M. Frumkin, H. Jin, J. Yan. Implementation of NAS Parallel Benchmarks in High Performance Fortran.

CDROM version of IPPS/SPDP 1999 Proceedings, April 12-16, 1999, San Juan, Puerto Rico, 10 pp.

[31 V.Getov, S. Flynn-Hummel, S. Mintchev. High-Performance Parallel Programming in Java: Exploiting

Native Libraries. Proceedings of the 1998 ACM Workshop on Java for High-Performance Network

Computing, 10 pp., http://perun.hscs.wmin.ac.uk/JavaMPI.

[4] J.A.Mathew, P.D.Coddington and K.A.Hawick. Analysis and Development of Java Grande Benchmarks.

Proc. of the ACM 1999 Java Grande Conference, San Francisco, June 1999, 14 pp., http://www.cs.ade-

laide.edu.au / users/paulc.

[5] S.P. MidkifL J.E. Moreira, M Snir. Java for Numerically Intensive Computing:from Flops to Gigaflops. Pro-

ceedings of FRONTIERS'99, pp. 251-257, Annapolis Maryland, February 21-25, 1999.

[6] S.P. Midkiff, J.E. Moreira, M. Gupta, F. Artigas, Numerically Intensive Java. http://www.alphaWorks.

ib re.corn / tech /ninja.

12

